在线日韩日本国产亚洲丨少妇伦子伦情品无吗丨欧美性猛交xxxx免费看蜜桃丨精品人妻系列无码一区二区三区丨亚洲精品无码不卡在线播放

Your Good Partner in Biology Research

Recombinant Severe acute respiratory syndrome coronavirus 2 Spike glycoprotein (S) (W436R), partial (Active)

In Stock
  • 貨號:
    CSB-MP3324GMY1(M2)
  • 規(guī)格:
    ¥1536
  • 圖片:
    • (Tris-Glycine gel) Discontinuous SDS-PAGE (reduced) with 5% enrichment gel and 15% separation gel.
    • Activity
      Measured by its binding ability in a functional ELISA. Immobilized SARS-CoV-2-S1-RBD(W436R) at 2 μg/ml can bind Biotinylated human ACE2 (CSB-MP866317HU-B), the EC50 is 625.3-783.2 ng/ml. Biological Activity Assay
  • 其他:

產(chǎn)品詳情

  • 純度:
    Greater than 85% as determined by SDS-PAGE.
  • 內(nèi)毒素:
    Less than 1.0 EU/ug as determined by LAL method.
  • 生物活性:
    Measured by its binding ability in a functional ELISA. Immobilized SARS-CoV-2-S1-RBD(W436R) at 2 μg/ml can bind Biotinylated human ACE2 (CSB-MP866317HU-B), the EC50 is 625.3-783.2 ng/ml.
  • 基因名:
  • Uniprot No.:
  • 別名:
    S; 2; Spike glycoprotein; S glycoprotein; E2; Peplomer protein)
  • 種屬:
    Severe acute respiratory syndrome coronavirus 2 (2019-nCoV) (SARS-CoV-2)
  • 蛋白長度:
    Partial
  • 來源:
    Mammalian cell
  • 分子量:
    27.8 kDa
  • 表達(dá)區(qū)域:
    319-541aa(W436R)
  • 氨基酸序列
    RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIARNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF
  • 蛋白標(biāo)簽:
    C-terminal 10xHis-tagged
  • 產(chǎn)品提供形式:
    Lyophilized powder
    Note: We will preferentially ship the format that we have in stock, however, if you have any special requirement for the format, please remark your requirement when placing the order, we will prepare according to your demand.
  • 緩沖液:
    Lyophilized from a 0.2 μm sterile filtered 20 mM Tris-HCl, 0.5 M NaCl, 6% Trehalose, pH 8.0
  • 復(fù)溶:
    We recommend that this vial be briefly centrifuged prior to opening to bring the contents to the bottom. Please reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL.We recommend to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. Our default final concentration of glycerol is 50%. Customers could use it as reference.
  • 儲存條件:
    Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. Avoid repeated freeze-thaw cycles.
  • 保質(zhì)期:
    The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability of the protein itself.
    Generally, the shelf life of liquid form is 6 months at -20°C/-80°C. The shelf life of lyophilized form is 12 months at -20°C/-80°C.
  • 貨期:
    3-7 business days
  • 注意事項(xiàng):
    Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week.
  • Datasheet & COA:
    Please contact us to get it.

產(chǎn)品評價(jià)

靶點(diǎn)詳情

  • 功能:
    attaches the virion to the cell membrane by interacting with host receptor, initiating the infection. Binding to human ACE2 receptor and internalization of the virus into the endosomes of the host cell induces conformational changes in the Spike glycoprotein. Binding to host NRP1 and NRP2 via C-terminal polybasic sequence enhances virion entry into host cell. This interaction may explain virus tropism of human olfactory epithelium cells, which express high level of NRP1 and NRP2 but low level of ACE2. The stalk domain of S contains three hinges, giving the head unexpected orientational freedom. Uses human TMPRSS2 for priming in human lung cells which is an essential step for viral entry. Can be alternatively processed by host furin. Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes.; mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.; Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.; May down-regulate host tetherin (BST2) by lysosomal degradation, thereby counteracting its antiviral activity.
  • 基因功能參考文獻(xiàn):
    1. Study presents crystal structure of C-terminal domain of SARS-CoV-2 (SARS-CoV-2-CTD) spike S protein in complex with human ACE2 (hACE2); hACE2-binding mode similar overall to that observed for SARS-CoV. However, details at the binding interface show that key residue substitutions in SARS-CoV-2-CTD slightly strengthen the interaction and lead to higher affinity for receptor binding than SARS-CoV receptor-binding domain. PMID: 32378705
    2. crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 bound to the cell receptor ACE2 PMID: 32365751
    3. crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 (engineered to facilitate crystallization) in complex with ACE2 PMID: 32320687
    4. Out of the two isolates from India compared to the isolates from Wuhan, China, one was found to harbor a mutation in its receptor-binding domain (RBD) at position 407 where, arginine was replaced by isoleucine. This mutation has been seen to change the secondary structure of the protein at that region and this can potentially alter receptor binding of the virus. PMID: 32275855
    5. Structural modeling of the SARS-CoV-2 spike glycoprotein show similar receptor utilization between SARS-CoV-2 and SARS-CoV, despite a relatively low amino acid similarity in the receptor binding module. Compared to SARS-CoV and all other coronaviruses in Betacoronavirus lineage B, an extended structural loop containing basic amino acids were identified at the interface of the receptor binding (S1) and fusion (S2) domains. PMID: 32245784
    6. crystal structure of CR3022, a neutralizing antibody from a SARS patient, in complex with the receptor-binding domain of the SARS-CoV-2 spike (S) protein to 3.1 A; study provides insight into how SARS-CoV-2 can be targeted by the humoral immune response and revealed a conserved, but cryptic epitope shared between SARS-CoV-2 and SARS-CoV PMID: 32225176
    7. SARS-CoV and SARS-CoV-2 spike proteins have comparable binding affinities achieved by balancing energetics and dynamics. The SARS-CoV-2-ACE2 complex contains a higher number of contacts, a larger interface area, and decreased interface residue fluctuations relative to the SARS-CoV-ACE2 complex. PMID: 32225175
    8. Interaction interface between cat/dog/pangolin/Chinese hamster ACE2 and SARS-CoV/SARS-CoV-2 S protein was simulated through homology modeling. Authors identified that N82 of ACE2 showed closer contact with receptor-binding domain of S protein than human ACE2. PMID: 32221306
    9. SARS-CoV-2 S glycoprotein harbors a furin cleavage site at the boundary between the S1/S2 subunits, which is processed during biogenesis and sets this virus apart from SARS-CoV and SARS-related CoVs; determined cryo-EM structures of the SARS-CoV-2 S ectodomain trimer. PMID: 32201080
    10. Study demonstrates that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. PMID: 32155444
    11. The ACE2-B0AT1 complex exists as a dimer of heterodimers. Structural alignment of the RBD-ACE2-B0AT1 ternary complex with the S protein of SARS-CoV-2 suggests that two S protein trimers can simultaneously bind to an ACE2 homodimer. PMID: 32142651
    12. study demonstrated SARS-CoV-2 S protein entry on 293/hACE2 cells is mainly mediated through endocytosis, and PIKfyve, TPC2 and cathepsin L are critical for virus entry; found that SARS-CoV-2 S protein could trigger syncytia in 293/hACE2 cells independent of exogenous protease; there was limited cross-neutralization activity between convalescent sera from SARS and COVID-19 patients PMID: 32132184
    13. study determined a 3.5-angstrom-resolution cryo-electron microscopy structure of the 2019-nCoV S trimer in the prefusion conformation; provided biophysical and structural evidence that the 2019-nCoV S protein binds angiotensin-converting enzyme 2 (ACE2) with higher affinity than does severe acute respiratory syndrome (SARS)-CoV S PMID: 32075877

    顯示更多

    收起更多

  • 亞細(xì)胞定位:
    Virion membrane; Single-pass type I membrane protein. Host endoplasmic reticulum-Golgi intermediate compartment membrane; Single-pass type I membrane protein. Host cell membrane; Single-pass type I membrane protein.
  • 蛋白家族:
    Betacoronaviruses spike protein family


主站蜘蛛池模板: 久久视热这里只有精品| 美女mm131爽爽爽作爱| 国产八十老太另类| 中文字幕亚洲综合久久蜜桃| 18禁裸体动漫美女无遮挡网站| 狂野欧美性猛xxxx乱大交 | 国产成人愉拍精品| 国产乱人伦精品一区二区| 人人做人人妻人人精| 小小拗女性bbwxxxx国产| 色久悠悠婷婷综合在线亚洲| 久久av无码精品人妻系列| 婷婷五月综合激情中文字幕 | 一中文字幕日产乱码va| 婷婷亚洲综合五月天小说| 国产真实乱人偷精品视频| 国产萌白酱喷水视频在线播放| 又色又爽又黄高潮的免费视频| 国产精自产拍久久久久久蜜| 欲色影视天天一区二区三区色香欲| 日本一卡2卡3卡4卡5卡精品视频 | 真人无码作爱免费视频| 熟妇人妻中文av无码| 人妻出轨av中文字幕| 久久九九国产精品怡红院| 国产自偷自偷免费一区| 国产精品亚洲w码日韩中文| 午夜视频在线观看免费完整版| 国产人妻久久精品二区三区老狼| 兔费看少妇性l交大片免费| 九九热爱视频精品| 日本xxxx裸体xxxx视频大全| 999久久欧美人妻一区二区| 国产一卡三卡四卡无卡精品| 在线观看无码av网站永久免费| 国产成年无码久久久久下载| 成人做爰视频www网站小优视频| 国产av福利久久| 色妞www精品视频| aaaaa少妇高潮大片| 国内精品久久久久久久影院|