在线日韩日本国产亚洲丨少妇伦子伦情品无吗丨欧美性猛交xxxx免费看蜜桃丨精品人妻系列无码一区二区三区丨亚洲精品无码不卡在线播放

Your Good Partner in Biology Research

S Monoclonal Antibody

Rare Species
  • 中文名稱:
    S鼠單克隆抗體
  • 貨號:
    CSB-MA33245A2m
  • 規格:
    ¥1320
  • 圖片:
    •   The Binding Activity of SARS-CoV-2-S Antibody with SARS-CoV-2-S1-RBD
      Activity: Measured by its binding ability in a functional ELISA. Immobilized SARS-CoV-2-S1-RBD (CSB-YP3324GMY1) at 2 μg/ml can bind SARS-CoV-2-S Antibody, the EC50 is 20.03 to 27.01 ng/ml.
  • 其他:

產品詳情

  • 產品描述:
    CUSABIO貨號:CSB-MA33245A2m S單克隆抗體是針對新型冠狀病毒(SARS-CoV-2/2019-nCoV)S蛋白研發的高特異性科研試劑。S蛋白作為病毒表面的關鍵刺突蛋白,介導宿主細胞ACE2受體結合及膜融合過程,是病毒入侵的核心靶點及疫苗開發的重要抗原。該抗體采用雜交瘤技術制備,經ELISA、Western Blot及免疫組化(IHC)等多平臺驗證,可精準識別天然構象的S蛋白抗原表位,適用于病毒入侵機制研究、疫苗免疫原性評估及中和抗體藥物開發等科研場景。產品具有高批次穩定性與低交叉反應性特點,能夠有效支持新型冠狀病毒相關蛋白互作分析、感染模型建立及抗病毒藥物篩選等基礎研究需求,為呼吸道病毒研究領域提供可靠的實驗工具。
  • Uniprot No.:
  • 別名:
    S; 2; Spike glycoprotein; S glycoprotein; E2; Peplomer protein)
  • 宿主:
    Mouse
  • 反應種屬:
    Human Novel Coronavirus (SARS-CoV-2/ 2019-nCoV)
  • 免疫原:
    Recombinant Human Novel Coronavirus Spike glycoprotein (S) (319-541aa)
  • 免疫原種屬:
    Human Novel Coronavirus (SARS-CoV-2/ 2019-nCoV)
  • 標記方式:
    Non-conjugated
  • 克隆類型:
    Monoclonal
  • 純化方式:
    >95%, Protein G purified
  • 克隆號:
    18C7B10
  • 濃度:
    It differs from different batches. Please contact us to confirm it.
  • 保存緩沖液:
    Preservative: 0.03% Proclin 300
    Constituents: 50% Glycerol, 0.01M PBS, PH 7.4
  • 產品提供形式:
    Liquid
  • 應用范圍:
    ELISA
  • 推薦稀釋比:
    Application Recommended Dilution
    ELISA 1:1000-1:5000
  • Protocols:
  • 儲存條件:
    Upon receipt, store at -20°C or -80°C. Avoid repeated freeze.
  • 貨期:
    Basically, we can dispatch the products out in 1-3 working days after receiving your orders. Delivery time maybe differs from different purchasing way or location, please kindly consult your local distributors for specific delivery time.
  • 用途:
    For Research Use Only. Not for use in diagnostic or therapeutic procedures.

產品評價

靶點詳情

  • 功能:
    attaches the virion to the cell membrane by interacting with host receptor, initiating the infection. Binding to human ACE2 receptor and internalization of the virus into the endosomes of the host cell induces conformational changes in the Spike glycoprotein. Binding to host NRP1 and NRP2 via C-terminal polybasic sequence enhances virion entry into host cell. This interaction may explain virus tropism of human olfactory epithelium cells, which express high level of NRP1 and NRP2 but low level of ACE2. The stalk domain of S contains three hinges, giving the head unexpected orientational freedom. Uses human TMPRSS2 for priming in human lung cells which is an essential step for viral entry. Can be alternatively processed by host furin. Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes.; mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.; Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.; May down-regulate host tetherin (BST2) by lysosomal degradation, thereby counteracting its antiviral activity.
  • 基因功能參考文獻:
    1. Study presents crystal structure of C-terminal domain of SARS-CoV-2 (SARS-CoV-2-CTD) spike S protein in complex with human ACE2 (hACE2); hACE2-binding mode similar overall to that observed for SARS-CoV. However, details at the binding interface show that key residue substitutions in SARS-CoV-2-CTD slightly strengthen the interaction and lead to higher affinity for receptor binding than SARS-CoV receptor-binding domain. PMID: 32378705
    2. crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 bound to the cell receptor ACE2 PMID: 32365751
    3. crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 (engineered to facilitate crystallization) in complex with ACE2 PMID: 32320687
    4. Out of the two isolates from India compared to the isolates from Wuhan, China, one was found to harbor a mutation in its receptor-binding domain (RBD) at position 407 where, arginine was replaced by isoleucine. This mutation has been seen to change the secondary structure of the protein at that region and this can potentially alter receptor binding of the virus. PMID: 32275855
    5. Structural modeling of the SARS-CoV-2 spike glycoprotein show similar receptor utilization between SARS-CoV-2 and SARS-CoV, despite a relatively low amino acid similarity in the receptor binding module. Compared to SARS-CoV and all other coronaviruses in Betacoronavirus lineage B, an extended structural loop containing basic amino acids were identified at the interface of the receptor binding (S1) and fusion (S2) domains. PMID: 32245784
    6. crystal structure of CR3022, a neutralizing antibody from a SARS patient, in complex with the receptor-binding domain of the SARS-CoV-2 spike (S) protein to 3.1 A; study provides insight into how SARS-CoV-2 can be targeted by the humoral immune response and revealed a conserved, but cryptic epitope shared between SARS-CoV-2 and SARS-CoV PMID: 32225176
    7. SARS-CoV and SARS-CoV-2 spike proteins have comparable binding affinities achieved by balancing energetics and dynamics. The SARS-CoV-2-ACE2 complex contains a higher number of contacts, a larger interface area, and decreased interface residue fluctuations relative to the SARS-CoV-ACE2 complex. PMID: 32225175
    8. Interaction interface between cat/dog/pangolin/Chinese hamster ACE2 and SARS-CoV/SARS-CoV-2 S protein was simulated through homology modeling. Authors identified that N82 of ACE2 showed closer contact with receptor-binding domain of S protein than human ACE2. PMID: 32221306
    9. SARS-CoV-2 S glycoprotein harbors a furin cleavage site at the boundary between the S1/S2 subunits, which is processed during biogenesis and sets this virus apart from SARS-CoV and SARS-related CoVs; determined cryo-EM structures of the SARS-CoV-2 S ectodomain trimer. PMID: 32201080
    10. Study demonstrates that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. PMID: 32155444
    11. The ACE2-B0AT1 complex exists as a dimer of heterodimers. Structural alignment of the RBD-ACE2-B0AT1 ternary complex with the S protein of SARS-CoV-2 suggests that two S protein trimers can simultaneously bind to an ACE2 homodimer. PMID: 32142651
    12. study demonstrated SARS-CoV-2 S protein entry on 293/hACE2 cells is mainly mediated through endocytosis, and PIKfyve, TPC2 and cathepsin L are critical for virus entry; found that SARS-CoV-2 S protein could trigger syncytia in 293/hACE2 cells independent of exogenous protease; there was limited cross-neutralization activity between convalescent sera from SARS and COVID-19 patients PMID: 32132184
    13. study determined a 3.5-angstrom-resolution cryo-electron microscopy structure of the 2019-nCoV S trimer in the prefusion conformation; provided biophysical and structural evidence that the 2019-nCoV S protein binds angiotensin-converting enzyme 2 (ACE2) with higher affinity than does severe acute respiratory syndrome (SARS)-CoV S PMID: 32075877

    顯示更多

    收起更多

  • 亞細胞定位:
    Virion membrane; Single-pass type I membrane protein. Host endoplasmic reticulum-Golgi intermediate compartment membrane; Single-pass type I membrane protein. Host cell membrane; Single-pass type I membrane protein.
  • 蛋白家族:
    Betacoronaviruses spike protein family


主站蜘蛛池模板: 国产又粗又猛又大爽又黄| 18禁成人网站免费观看| 影视av久久久噜噜噜噜噜三级| 三级久久试看3分钟| 92国产精品午夜福利| 国产免码va在线观看免费| 久久大蕉香蕉免费| 亚洲欧洲美洲无码精品va| 国产精品国产三级国产av主播 | 秋霞午夜久久午夜精品| 性猛交ⅹxxx富婆视频| 久久九九有精品国产尤物| 一区二三区国产好的精华液o9| 日本五月天婷久久网站| 欧美肥胖老妇bbw| 亚洲 欧美 日韩 综合aⅴ视频| 午夜香蕉成视频人网站| 午夜免费国产体验区免费的| 99re热视频这里只精品| 综合久久给合久久狠狠狠97色 | 欧美乱妇高清无乱码在线观看| av制服丝袜白丝国产网站| 极品无码国模国产在线观看 | 各种少妇正面bbw撒尿| 国产精品玩偶在线观看| 香蕉啪视频在线观看视频久| 色天天天综合色天天| 国产精品沙发午睡系列990531| 亚洲最大av资源站无码av网址| 99热成人精品热久久| 日日日日做夜夜夜夜做无码| 日韩精品人妻系列一区二区三区| 免费看男女做爰爽爽视频| 亚洲国产精品成人久久| 与子敌伦刺激对白播放| 日本久久久久久级做爰片| 色香阁综合无码国产在线| 欧美色欧美亚洲高清在线观看| 日本簧片在线观看| 韩国精品一区二区无码视频| 国产一区二区三区不卡av|