在线日韩日本国产亚洲丨少妇伦子伦情品无吗丨欧美性猛交xxxx免费看蜜桃丨精品人妻系列无码一区二区三区丨亚洲精品无码不卡在线播放

Your Good Partner in Biology Research

Recombinant Human Gastric inhibitory polypeptide (GIP)

  • 中文名稱:
    人GIP重組蛋白
  • 貨號(hào):
    CSB-EP009434HU
  • 規(guī)格:
    ¥1536
  • 圖片:
    • (Tris-Glycine gel) Discontinuous SDS-PAGE (reduced) with 5% enrichment gel and 15% separation gel.
  • 其他:

產(chǎn)品詳情

  • 純度:
    Greater than 85% as determined by SDS-PAGE.
  • 生物活性:
    Not Test
  • 基因名:
  • Uniprot No.:
  • 別名:
    GIP;Glucose-dependent insulinotropic polypeptide;Incretin hormone
  • 種屬:
    Homo sapiens (Human)
  • 蛋白長度:
    Full Length of Mature Protein
  • 來源:
    E.coli
  • 分子量:
    10.0 kDa
  • 表達(dá)區(qū)域:
    52-93aa
  • 氨基酸序列
    YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ
    Note: The complete sequence may include tag sequence, target protein sequence, linker sequence and extra sequence that is translated with the protein sequence for the purpose(s) of secretion, stability, solubility, etc.
    If the exact amino acid sequence of this recombinant protein is critical to your application, please explicitly request the full and complete sequence of this protein before ordering.
  • 蛋白標(biāo)簽:
    N-terminal 10xHis-tagged and C-terminal Myc-tagged
  • 產(chǎn)品提供形式:
    Liquid or Lyophilized powder
    Note: We will preferentially ship the format that we have in stock, however, if you have any special requirement for the format, please remark your requirement when placing the order, we will prepare according to your demand.
  • 緩沖液:
    If the delivery form is liquid, the default storage buffer is Tris/PBS-based buffer, 5%-50% glycerol. If the delivery form is lyophilized powder, the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose.
  • 復(fù)溶:
    We recommend that this vial be briefly centrifuged prior to opening to bring the contents to the bottom. Please reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL.We recommend to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20℃/-80℃. Our default final concentration of glycerol is 50%. Customers could use it as reference.
  • 儲(chǔ)存條件:
    Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. Avoid repeated freeze-thaw cycles.
  • 保質(zhì)期:
    The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability of the protein itself.
    Generally, the shelf life of liquid form is 6 months at -20°C/-80°C. The shelf life of lyophilized form is 12 months at -20°C/-80°C.
  • 貨期:
    Delivery time may differ from different purchasing way or location, please kindly consult your local distributors for specific delivery time.
  • 注意事項(xiàng):
    Repeated freezing and thawing is not recommended. Store working aliquots at 4℃ for up to one week.
  • Datasheet & COA:
    Please contact us to get it.

產(chǎn)品評價(jià)

靶點(diǎn)詳情

  • 功能:
    Potent stimulator of insulin secretion and relatively poor inhibitor of gastric acid secretion.
  • 基因功能參考文獻(xiàn):
    1. The genetic variability of GIP gene is associated with coronary artery disease and it may play a role in the premature coronary artery disease in the Chinese Han population with type 2 diabetes. PMID: 29765988
    2. The ability of a truncated form of GIP, GIP(3-30)NH2, to antagonize the physiological actions of GIP in glucose metabolism, subcutaneous abdominal adipose tissue blood flow, and lipid metabolism in humans. PMID: 28667118
    3. GIP and PP plasma concentrations are lower in pancreatic cancer irrespective of the degree of glucose intolerance as compared to Type 2 diabetic patients and healthy controls. PMID: 28027898
    4. Evening postprandial insulin and GIP responses and insulin resistance declined by over 30% after three meals that limited daily carbohydrate intake to 30% compared to no such changes after three 60%-carbohydrate meals, an effect that was independent of pre-meal exercise. PMID: 27798656
    5. the stimulatory effect of IGF-1 on GIP promoter support the hypothesis of a functional growth hormone-igf-1-GIP axis PMID: 28179449
    6. decreased maternal 25OHD may be associated with decreased cord 25OHD and increased cord GLP-1 and GIP levels, which may be involved with the transfer of maternal glucose to the fetus PMID: 26650343
    7. Excess androgen activity might be a factor contributing to alter secretion of incretins in lean polycystic ovary syndrome (PCOS) women. However it could not be ruled out that it is also possible that increased GIP levels might induce hyperandrogenemia in PCOS. PMID: 26895276
    8. Our results might indicate an altered DPP4-incretin system and altered immunoregulation including a potentially dysfunctional GLP1(9)(-)(36) signaling in T1DM. PMID: 26434625
    9. Fasting GIP concentrations are higher in individuals with a history of cardiovascular disease (myocardial infarction, stroke) when compared with control subjects. PMID: 26395740
    10. Data suggest that high levels of blood glucose or AGEs (advanced glycation end products), as seen in hyperglycemia, reduce secretion of insulin by pancreatic beta cells via antagonism of GIP (gastric inhibitory polypeptide)/GIP receptor signaling. PMID: 26221611
    11. Data confirm that postprandial plasma levels of glucose-dependent insulinotropic polypeptide (GIP) and insulin (INS) are responsive to glycemic index of foods consumed; glycemic index of breakfast cereals regulate plasma postprandial GIP and INS. PMID: 25852025
    12. irisin and GIP might contribute to the development of polycystic ovary syndrome and may also represent novel polycystic ovary syndrome biomarkers PMID: 25029417
    13. Data suggest that postprandial blood levels of both GIP and insulin can be regulated by diet; here, inclusion of nopal/Opuntia/cactus (a functional food in traditional Mexican medicine) in breakfast reduces postprandial levels of GIP and insulin. PMID: 25132122
    14. phosphatidylinositol 3-kinase gamma has a role in insulin secretion induced by glucose-dependent insulinotropic polypeptide PMID: 25288806
    15. These novel results support the notion that the GIP-GIPR axis plays a role in the etiology of central obesity in humans PMID: 25324507
    16. Data from studies in healthy Japanese men suggest that plasma GIP levels in postprandial period are dose dependently increased by fat content of meals of ordinary size, despite the amount of additional fat being relatively small. PMID: 24507870
    17. Patients with idiopathic gastroparesis exhibit abnormal GIP levels. PMID: 23663508
    18. Beta cell connectedness is an inherent property of human islets that is likely to influence incretin-potentiated insulin secretion. PMID: 24018562
    19. Data suggest that postprandial plasma levels of glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP1) are increased after consumption of buckwheat crackers versus rice crackers in healthy and type 2 diabetic subjects. PMID: 23485142
    20. GIP induces an inflammatory and prolipolytic response via the PKA -NF-kappaB-IL-1 pathway and impairs insulin sensitivity of glucose uptake in human adipocytes. PMID: 23092914
    21. results indicate postprandial GIP secretion in early-phase after test meal in Japanese patients with type 2 diabetes was positively correlated with BMI, but not those with type 1 diabetes PMID: 22301939
    22. Hyperinsulinemia subjects with metabolic syndrome showed increased GIP secretion that could be responsible for the delayed glucagon suppression. PMID: 22391044
    23. Data suggest that reduced insulinotropic effect of GIP or GLP-1 (as in type 2 diabetes) can be induced in healthy subjects; this indicates that reduced incretin stimulation of insulin secretion results from insulin resistance/glucose intolerance. PMID: 22319034
    24. GIP reduces free fatty acid release from adipose tissue by inhibition of lipolysis or by increased reesterification. PMID: 22179810
    25. may have a pro-obesogenic action [review] PMID: 21815989
    26. Studies identified some potentially important additional C-terminal interactions of GIP with its N-terminal extracellular receptor domain. PMID: 21539943
    27. We report that the human GIP locus was differentially selected in East Asians about 8100 years ago based on the analysis of a nonsynonymous SNP (rs2291725). PMID: 20978139
    28. GLP-2, but not GIP, was found to stimulate the release of glucagon in patients with T1DM, suggesting a role for GLP-2 in the postprandial hyperglucagonaemia characterising individuals with T1DM PMID: 20580750
    29. These results suggest that Tyr/His(1) and Ile/Thr(7) of GIP/GLP-1 peptides confer differential ligand selectivity toward GIPR and GLP1R. PMID: 20799012
    30. We demonstrate for the first time that changes in insulin secretion after lifestyle intervention may be mediated via alterations in GIP secretion from intestinal K-cells PMID: 20200305
    31. No statistically significant association was observed between any of the single nucleotide polymorphisms of GIP analysed and type 2 diabetes in our population. PMID: 20673334
    32. GIP is expressed in and secreted from pancreatic islets and promotes islet glucose competence and also could support islet development and/or survival. PMID: 20138041
    33. a binding mode of GIP to GIPR in which the N-terminal moiety of GIP was sited within transmembrane helices (TMH) 2, 3, 5, and 6 with biologically crucial Tyr1 interacting with Gln224 (TMH3), Arg300 (TMH5), and Phe357 (TMH6). PMID: 20061446
    34. Substitution of Glu(3) in GIP with proline produces a novel dipeptidylpeptidase IV-resistant GIP antagonist which inhibits GIP-induced cAMP generation and insulin secretion with high sensitivity and specificity in vitro. PMID: 11820780
    35. activates the Raf-Mek1/2-ERK1/2 module via a cyclic AMP/cAMP-dependent protein kinase/Rap1-mediated pathway PMID: 12138104
    36. Mutation in promoter region of gip receptor gene are unlikely to underlie GIP-dependent Cushing syndrome. PMID: 12530694
    37. Elevated plasma GIP levels are correlated with hyperinsulinemia in the impaired glucose-tolerant state, whereas type 2 diabetes is associated with a failure to secrete adequate amounts of GIP. PMID: 15220248
    38. bombesin and nutrients additively stimulate GIP release from GIP/Ins cells. PMID: 15383372
    39. Results describe the solution structure of GIP(1-30)amide, the major biologically active fragment of glucose-dependent insulinotropic polypeptide. PMID: 15522230
    40. GIP augments glucose-stimulated insulin secretion and acts as an endogenous inhibitor of gastric acid secretion--REVIEW PMID: 15533777
    41. GIP stimulates insulin secretion by potentiating events underlying membrane depolarization and exerting direct effects on exocytosis. PMID: 15955806
    42. The relationship between insulin resistance and the insulin secretion to GIP suggests that beta cell secretory function in response to different stimuli increases adaptively when insulin sensitivity is diminished, as in gestational diabetes. PMID: 16010522
    43. GIP is rapidly degraded into inactive metabolites by the enzyme dipeptidyl-peptidase-IV. (review) PMID: 16142014
    44. protein kinase B, LKB1, and AMP-activated protein kinase have roles in activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes PMID: 17244606
    45. study identified a splice site mutation of the Glucose-dependent insulinotropic polypeptide (GIP) gene which results in a truncated protein and provides evidence for association of GIP receptor genotype with cardiovascular disease PMID: 17624916
    46. physiologic role for GIP in lipid homeostasis and possibly in the pathogenesis of obesity. PMID: 18054552
    47. concomitant expression of Pax6 and Pdx1 is important for glucose-dependent insulinotropic polypeptide expression PMID: 18593849
    48. GIP secretion is blunted after the biliopancreatic diversion only in diabetic patients, suggesting a role in insulin resistance and diabetes. PMID: 19229515
    49. GIP may mediate the attenuated glucose-stimulated insulin response after exercise/diet interventions PMID: 19351807
    50. Inhibition of apoptosis by GIP is mediated via a key pathway involving Akt-dependent inhibition of apoptosis signal-regulating kinase 1, which subsequently prevents the pro-apoptotic actions of p38 MAPK and JNK. PMID: 19748889

    顯示更多

    收起更多

  • 亞細(xì)胞定位:
    Secreted.
  • 蛋白家族:
    Glucagon family
  • 數(shù)據(jù)庫鏈接:

    HGNC: 4270

    OMIM: 137240

    KEGG: hsa:2695

    STRING: 9606.ENSP00000350005

    UniGene: Hs.1454



主站蜘蛛池模板: 欧美超级乱婬视频播放| 久久精品道一区二区三区| 天天天狠天天碰天天爱| 精品熟女少妇av免费久久| 久久久精品国产sm最大网站| 中出あ人妻熟女中文字幕| 天天做天天爱天天综合网2021| 日本十八禁黄无遮禁视频免费| 在线天堂免费观看.www| 色噜噜狠狠狠狠色综合久一| 蜜桃视频网站| 蜜臀亚洲精品国产aⅴ综合第一| 精品一区二区三区国产在线观看| 蜜桃mv在线播放免费观看视频| 国产女人和拘做受视频免费| 东方aⅴ免费观看久久av| 久热这里只有精品99在线观看| 一本热久久sm色国产| 久久成人麻豆午夜电影| 亚洲狠狠成人网| 偷自拍亚洲视频在线观看99| 国产精品熟妇一区二区三区四区| 玩弄japan白嫩少妇hd| 大j8黑人w巨大888a片| 97狠狠狠狼鲁亚洲综合网| 吸咬奶头狂揉60分钟视频| 亚洲欧美精品suv| 日韩国产精品人妻无码久久久| 国产精品区av| 国产网红主播无码精品| 国产在线无码不卡影视影院| 日本免费一区二区三区四区五区 | 亚洲国产三级在线观看| 国产免费内射又粗又爽密桃视频| 午夜亚洲www湿好大| 成人免费无码大片a毛片18| 激情 小说 亚洲 图片 伦| 人人爽人人爽人人片a| 亚洲国产成人精品无码区四虎| 日韩欧群交p片内射中文| 成熟丰满熟妇高潮xxxxx视频|