在线日韩日本国产亚洲丨少妇伦子伦情品无吗丨欧美性猛交xxxx免费看蜜桃丨精品人妻系列无码一区二区三区丨亚洲精品无码不卡在线播放

Your Good Partner in Biology Research

Phospho-KCNJ1 (S44) Antibody

  • 中文名稱:
    磷酸化-KCNJ1 (S44)兔多克隆抗體
  • 貨號:
    CSB-PA010512
  • 規(guī)格:
    ¥1090
  • 其他:

產(chǎn)品詳情

  • Uniprot No.:
  • 基因名:
    KCNJ1
  • 別名:
    ATP regulated potassium channel ROM K antibody; ATP sensitive inward rectifier potassium channel 1 antibody; ATP-regulated potassium channel ROM-K antibody; ATP-sensitive inward rectifier potassium channel 1 antibody; Inward rectifier K(+) channel Kir1.1 antibody; inwardly rectifying K+ channel antibody; inwardly rectifying subfamily J member 1 antibody; IRK1_HUMAN antibody; KCNJ 1 antibody; KCNJ antibody; Kcnj1 antibody; Kir 1.1 antibody; Kir1.1 antibody; OTTHUMP00000045938 antibody; Potassium channel antibody; Potassium channel inwardly rectifying subfamily J member 1 antibody; potassium inwardly-rectifying channel J1 antibody; ROMK 1 antibody; ROMK 2 antibody; ROMK antibody; ROMK1 antibody; ROMK2 antibody
  • 宿主:
    Rabbit
  • 反應(yīng)種屬:
    Human,Mouse,Rat
  • 免疫原:
    Synthesized peptide derived from Human ROM-K around the phosphorylation site of S44.
  • 免疫原種屬:
    Homo sapiens (Human)
  • 標記方式:
    Non-conjugated
  • 抗體亞型:
    IgG
  • 純化方式:
    The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific immunogen.
  • 濃度:
    It differs from different batches. Please contact us to confirm it.
  • 保存緩沖液:
    Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.
  • 產(chǎn)品提供形式:
    Liquid
  • 應(yīng)用范圍:
    IHC, IF, ELISA
  • 推薦稀釋比:
    Application Recommended Dilution
    IHC 1:100-1:300
    IF 1:200-1:1000
    ELISA 1:5000
  • Protocols:
  • 儲存條件:
    Upon receipt, store at -20°C or -80°C. Avoid repeated freeze.
  • 貨期:
    Basically, we can dispatch the products out in 1-3 working days after receiving your orders. Delivery time maybe differs from different purchasing way or location, please kindly consult your local distributors for specific delivery time.
  • 用途:
    For Research Use Only. Not for use in diagnostic or therapeutic procedures.

產(chǎn)品評價

靶點詳情

  • 功能:
    In the kidney, probably plays a major role in potassium homeostasis. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. This channel is activated by internal ATP and can be blocked by external barium.
  • 基因功能參考文獻:
    1. We replicated the methods in a previous study to detect rare and potentially loss-of-function variants in SLC12A3, SLC12A1, and KCNJ1 reducing blood pressure in variant carriers as compared with noncarriers using whole exome sequencing data. Our study confirmed that SLC12A3, SLC12A1, and KCNJ1 are indeed genes protective of hypertension in the general population. PMID: 30113482
    2. The presence of ROMK protein was observed in the inner mitochondrial membrane fraction. Moreover, colocalization of the ROMK protein and a mitochondrial marker in the mitochondria of fibroblast cells was shown by immunofluorescence. PMID: 29458000
    3. Data suggest underlying pathology for some patients with type II Bartter syndrome is linked to stability of ROMK1 in ERAD pathway; using a yeast expression system, cells can be rescued by wild-type (rat) ROMK1 but not by ROMK1 containing any one of four mutations found in (human) type II Bartter syndrome; mutant ROMKs are significantly less stable than wild-type ROMK. (ERAD = endoplasmic reticulum-associated degradation) PMID: 28630040
    4. WNK4 is a substrate of SFKs and the association of c-Src and PTP-1D with WNK4 at Tyr(1092) and Tyr(1143) plays an important role in modulating the inhibitory effect of WNK4 on ROMK PMID: 25805816
    5. knockdown of KCNJ1 in HK-2 cells promoted cell proliferation. Collectively, these data highlight that KCNJ1, low-expressed in ccRCC and associated with poor prognosis, plays an important role in ccRCC cell growth and metastasis PMID: 25344677
    6. The association between polymorphisms in KCNJ1, SLC12A1, and 7 other genes and calcium intake and colorectal neoplasia risk was studied. PMID: 25165391
    7. A KCNJ1 SNP was associated with increased FG during HCTZ treatment. PMID: 22907731
    8. Molecular analysis revealed a compound heterozygous mutation in the KCNJ1 gene, consisting of a novel K76E and an already described V315G mutation, both affecting functional domains of the channel protein. PMID: 23782368
    9. Findings suggest that 11q24 is a susceptible locus for openness, with KCNJ1 as the possible candidate gene. PMID: 23211697
    10. no mutation in the KCNJ1 gene, among patients suffering from bartter and Gitelman syndromes PMID: 21631963
    11. PI3K-activating hormones inhibit ROMK by enhancing its endocytosis via a mechanism that involves phosphorylation of WNK1 by Akt1 and SGK1. PMID: 21355052
    12. THGP modulation of ROMK function confers a new role of THGP on renal ion transport and may contribute to salt wasting observed in FJHN/MCKD-2/GCKD patients. PMID: 21081491
    13. KCNJ1 mutations are associated with Bartter syndrome. PMID: 20219833
    14. ROMK1 is a substrate of PKC and that serine residues 4 and 201 are the two main PKC phosphorylation sites that are essential for the expression of ROMK1 in the cell surface PMID: 12221079
    15. One disease-causing mutation in the ROMK channel truncates the extreme COOH-terminus and induces a closed gating conformation. PMID: 12381810
    16. In a heterozgous Bartter syndrome patient, AA exchanges Arg338Stop & Met357Thr in ROMK exon 5 alter the C-terminus of the ROMK protein & can affect channel function. PMID: 12589089
    17. Findings support the proposed role of ROMK channels in potassium recycling and in the regulation of K+ secretion and present a rationale for the phenotype observed in patients with ROMK deficiency. PMID: 15895241
    18. NH(2)-terminal phosphorylation modifying a COOH-terminal ER retention signal in ROMK1 could serve as a checkpoint for proper subunit folding critical to channel gating. PMID: 15987778
    19. ROMK is antagonistically regulated by long and kidney-specific WNK1 isoforms PMID: 16428287
    20. molecular mechanism for stimulation of endocytosis of ROMK1 by WNK kinases PMID: 17380208
    21. A novel mutation in KCNJ1 in a Bartter syndrome case diagnosed as pseudohypoaldosteronism. PMID: 17401586
    22. CD63 plays a role in the regulation of ROMK channels through its association with RPTPalpha, which in turn interacts with and activates Src family PTK, thus reducing ROMK activity. PMID: 18211905
    23. Members of the Framingham Heart Study were screened for variation in three genes-SLC12A3, SLC12A1 and KCNJ1 causing rare recessive diseases featuring large reductions in blood pressure. PMID: 18391953
    24. Five polymorphisms in the KCNJ1 gene coding for the potassium channel, ROMK, showed associations with mean 24-hour systolic or diastolic blood pressure. PMID: 18443236
    25. Multiple intra- and/or intermolecular interactions of WNK1 domains are at play for regulation of ROMK1 by WNK1 in the kidney. PMID: 18550644
    26. These results confirm the important role of the acidic motif of WNK4 in its protein-protein interaction with the ROMK channel. PMID: 18755144
    27. In a large cohort of ante/neonatal Bartter syndrome, deafness, transient hyperkalaemia and severe hypokalaemic hypochloraemic alkalosis orientate molecular investigations to BSND, KCNJ1 and CLCNKB genes, respectively. PMID: 19096086
    28. hydrophobic leucines at the cytoplasmic end of the inner transmembrane helices comprise the principal pH gate of Kir1.1, a gate that can be relocated from 160-Kir1.1b to 157-Kir1.1b. PMID: 19170254
    29. KS-WNK1 is an important physiological regulator of renal K(+) excretion, likely through its effects on the ROMK1 channel. PMID: 19244242
    30. These results suggest that the conformation of the cytoplasmic pore in the Kir1.1 channel changes in response to pHi gating such that the N- and C-termini move apart from each other at pHi 7.4, when the channel is open. PMID: 19272129
    31. Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho. PMID: 19349416
    32. c-Src inhibits SGK1-mediated phosphorylation hereby restoring the WNK4-mediated inhibition of ROMK channels thus suppressing K secretion. PMID: 19706464
    33. POSH inhibits ROMK channels by enhancing dynamin-dependent and clathrin-independent endocytosis and by stimulating ubiquitination of ROMK channels. PMID: 19710010

    顯示更多

    收起更多

  • 相關(guān)疾病:
    Bartter syndrome 2, antenatal (BARTS2)
  • 亞細胞定位:
    Cell membrane; Multi-pass membrane protein. Note=Phosphorylation at Ser-44 by SGK1 is necessary for its expression at the cell membrane.
  • 蛋白家族:
    Inward rectifier-type potassium channel (TC 1.A.2.1) family, KCNJ1 subfamily
  • 組織特異性:
    In the kidney and pancreatic islets. Lower levels in skeletal muscle, pancreas, spleen, brain, heart and liver.
  • 數(shù)據(jù)庫鏈接:

    HGNC: 6255

    OMIM: 241200

    KEGG: hsa:3758

    STRING: 9606.ENSP00000376432

    UniGene: Hs.527830



主站蜘蛛池模板: 狠狠色噜噜狠狠狠狠777米奇小说| 人妻少妇精品视频二区| 国产精品永久免费视频| 婷婷综合久久中文字幕蜜桃三电影| 国产精品白丝久久av网站| 国产成+人+综合+亚洲专区 | 青青青国产精品国产精品美女| 永久免费男同av无码入口| 久久天天躁夜夜躁狠狠躁| 草草地址线路①屁屁影院成人| 人妻少妇被粗大爽9797pw| 国产美女嘘嘘嘘嘘嘘| 人成午夜免费大片| 国产国语亲子伦亲子| 日本在线观看| 日本中文字幕乱码aa高清电影| 毛片大全真人在线| 国产欧美亚洲精品a第一页| 下面一进一出好爽视频| 人禽无码视频在线观看| 亚洲另类欧美小说图片区| 无遮18禁在线永久免费观看挡| 亚洲精品少妇30p| 欧美一区二区三区视频在线观看 | 俄罗斯大荫蒂女人毛茸茸| 亚洲色成人网站永久| 国产成人18黄网站| 鲁大师在线视频播放免费观看| 无码人妻精品一区二区三区久久久| 精产国品一二三产区9977| 天天影视性色香欲综合网| 中文无码久久精品| 亚洲欧洲免费无码| 亚洲色无码专线精品观看| 亚洲国产天堂久久综合网| 成av人片一区二区三区久久| 蜜臀av午夜一区二区三区| 在教室伦流澡到高潮hgl动漫| 亚洲精品国产一区二区的区别 | 亚洲精品无码aⅴ中文字幕蜜桃| 再深点灬舒服灬太大了网站|