在线日韩日本国产亚洲丨少妇伦子伦情品无吗丨欧美性猛交xxxx免费看蜜桃丨精品人妻系列无码一区二区三区丨亚洲精品无码不卡在线播放

Your Good Partner in Biology Research

BSA Monoclonal Antibody

Rare Species
  • 中文名稱:
    BSA鼠單克隆抗體
  • 貨號:
    CSB-MAP027691E0m
  • 規格:
    ¥1320
  • 圖片:
    • All lanes: Mouse Anti-BSA monoclonal antibody at 1μg/ml
      Lane 1:Bovine serum Albumin
      Predicted band size : 67kd
      Observed band size : 67kd
  • 其他:

產品詳情

  • 產品描述:
    BSA單克隆抗體(CUSABIO貨號:CSB-MAP027691E0m)是一款針對牛血清白蛋白(Bovine Serum Albumin)研發的高特異性科研試劑,適用于ELISA和Western Blot等蛋白質檢測實驗。BSA作為分子量約66.4kDa的球狀蛋白,廣泛存在于生物實驗中作為載體蛋白或封閉劑使用,其穩定的三級結構和豐富的抗原表位使其成為抗體開發的重要靶標。本產品采用單克隆抗體技術制備,具有嚴格的種屬特異性,可精準識別牛源BSA分子,在免疫印跡中能清晰呈現目標條帶,在酶聯免疫吸附實驗中展現出高靈敏度的結合性能。作為科研實驗的關鍵工具,該抗體適用于BSA偶聯物的檢測驗證、實驗體系中交叉反應分析以及生物制劑中殘留BSA的定量研究,為蛋白質相互作用、藥物載體開發等基礎研究提供可靠支持。AntibodySystem品牌通過重組抗體技術平臺確保產品批間一致性,滿足實驗室對穩定性與重復性的嚴格要求。
  • 產品名稱:
    mouse anti-bovine ALB monoclonal antibody
  • Uniprot No.:
  • 基因名:
  • 別名:
    ALB antibody; Serum albumin antibody; BSA antibody; allergen Bos d 6 antibody
  • 宿主:
    mouse
  • 反應種屬:
    Bovine
  • 免疫原:
    bovine Serum albumin
  • 免疫原種屬:
    bovine
  • 標記方式:
    Non-conjugated
  • 克隆類型:
    monoclonal
  • 抗體亞型:
    IgG2b
  • 純化方式:
    >95%,protein G purifed
  • 克隆號:
    1D11A1
  • 濃度:
    It differs from different batches. Please contact us to confirm it.
  • 保存緩沖液:
    Preservative: 0.03% Proclin 300 Constituents: 50% Glycerol, 0.01M PBS, PH 7.4
  • 產品提供形式:
    liquid
  • 應用范圍:
    ELISA,WB
  • 推薦稀釋比:
    Application Recommended Dilution
    WB 1:500-1:5000
  • Protocols:
  • 儲存條件:
    Upon receipt, store at -20°C or -80°C. Avoid repeated freeze.
  • 貨期:
    Basically, we can dispatch the products out in 1-3 working days after receiving your orders. Delivery time maybe differs from different purchasing way or location, please kindly consult your local distributors for specific delivery time.
  • 用途:
    For Research Use Only. Not for use in diagnostic or therapeutic procedures.

產品評價

靶點詳情

  • 功能:
    Binds water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc. Major calcium and magnesium transporter in plasma, binds approximately 45% of circulating calcium and magnesium in plasma (Probable). Potentially has more than two calcium-binding sites and might additionally bind calcium in a non-specific manner. The shared binding site between zinc and calcium at residue Asp-272 suggests a crosstalk between zinc and calcium transport in the blood (Probable). The rank order of affinity is zinc > calcium > magnesium (Probable). Binds to the bacterial siderophore enterobactin and inhibits enterobactin-mediated iron uptake of E.coli, and may thereby limit the utilization of iron and growth of enteric bacteria such as E.coli. Does not prevent iron uptake by the bacterial siderophore aerobactin.
  • 基因功能參考文獻:
    1. The interaction of DRV with bovine serum albumin (BSA), a major carrier protein, has been studied under simulated physiological conditions (pH7.4) by multi-spectroscopic techniques in combination with molecular modeling. PMID: 28753530
    2. hese obtained results provide an in-depth understanding of the interaction of the acid azo dye AO10 with serum albumins. PMID: 29126006
    3. that thiamine hydrochloride (TA) is located in site I of bovine serum albumin (BSA). PMID: 27550086
    4. The molecular dynamics results show how the negatively charged BSA at pH7 adsorbs to the negatively charged silica surface, and reveal a unique orientation with preserved secondary and tertiary structure. The experiments then show that the protein forms complete monolayers at approximately pH6, just above the protein's isoelectric point (pH5.1). PMID: 28350173
    5. Molecular dynamics (MD) simulation results demonstrate that the "hard protein" lysozyme retains much of its secondary structure during adsorption, whereas BSA loses it almost completely. BSA has a considerably larger adsorption energy compared to that of lysozyme, which does not scale with chain length. Desorption simulations are carried out using classical steered MD. PMID: 27421144
    6. identified a total of 125 carbonylated residues in bovine serum albumin after extensive in vitro metal ion-catalysed oxidation PMID: 28062376
    7. Degradation of BSA by serine proteases was monitored with Fourier transform infrared (FT-IR) and ultraviolet circular dichroism (UV-CD). alpha-Helical structure of BSA was converted into unordered structure upon digestion. PMID: 26926394
    8. Data show that the maximum adsorption occurred at the isoelectric point (pH 4.7) of bovine serum albumin (BSA). PMID: 26673525
    9. The ITC results indicated that the interaction between the protein (BSA and BHb) and QDs-612 was spontaneous and the predominant force was hydrophobic interaction PMID: 25143002
    10. Data (including data from biophysical studies using Langmuir lipid monolayer technique) suggest that human/bovine ALB exhibits minimal electrostatic repulsion and inserts effectively into phospholipid monolayers. [REVIEW] PMID: 24267981
    11. data indicate that conjugation of carboxyl groups with monosaccharide generates functional BSA with membrane-perturbing activities on the lipid-water interface. PMID: 25449061
    12. Data suggest that native BSA samples can be dehydrated to approximately 450 waters per protein molecule via microglassification and then reverted to native-like conformation upon rehydration with only minor irreversible aggregation. PMID: 24415208
    13. molecular modeling approaches were employed to determine the interaction between lysionotin and bovine serum albumin (BSA) at physiological pH PMID: 24398555
    14. Bovine Serum Albumine aqueous solutions in the presence of NaCl are investigated for different protein concentrations and low to intermediate ionic strengths. Protein interactions are modeled via a charge-screened colloidal model. PMID: 23534667
    15. A crystallographic structural study allows identification of serum albumin fragments responsible for immunogenicity and the postulation of a mechanism for antigen-antibody recognition in cattle. PMID: 22993082
    16. Glass transition and dynamics in BSA-water mixtures over wide ranges of composition studied by thermal and dielectric techniques. PMID: 21798376
    17. The dynamics of bovine serum albumin (BSA) and human fibrinogen (Fg) at low concentrations were observed at the solid-aqueous interface as a function of temperature. PMID: 22713578
    18. serum albumin possesses chaperone-like properties and that this activity is maintained under a number of physiologically relevant conditions. PMID: 22549788
    19. Interaction between 2',4-dihydroxychalcone and the N, f, e conformers of albumin was exothermic and spontaneous. PMID: 22450828
    20. The results showed that the riboflavin could efficiently bind to BSA in aqueous solution. PMID: 22154267
    21. The unfolding and refolding of BSA appear to proceed through intermediates and both the processes are sequential in nature. PMID: 21993230
    22. The results indicated that the binding abilities of vitamin B12 to BSA in the acidic and basic pH regions (pH 2.5, 3.5, 5.0, and 9.0) were lower than that at simulating physiological condition (pH 7.4). PMID: 21955947
    23. new insights on bovine serum albumin self-assembly process PMID: 21303653
    24. Data indicate that CD spectroscopy of the HSA and BSA released in solution after desorption from the matrices shows that, while both proteins partially regain their helical structure, they show a distinct behaviour in their tertiary structure. PMID: 20692819
    25. Data show that the fluorescence quenching process may occur through energy transfer from singlet excited state of tryptophan in BSA to the corresponding level of ASP. PMID: 20667434
    26. L-Arginine does not prevent amyloid-like fibril formation by BSA. PMID: 20204431
    27. Our data suggest that the efficacy of this detoxication system is based on the high concentration of albumin in plasma (and in the rest of the body), and not on the catalytic efficacy itself, which is low for albumin. PMID: 20211614
    28. The shortest binding distance and energy transfer efficiencies between donor BSA and acceptor methyl pheophorbide-a were obtained by Forster's nonradiative energy transfer mechanism. PMID: 16128079
    29. Data show that the apparent complexation constant of Pb2 x BSA is lgK = 11.61, and the nitrogen in BSA could coordinate with lead in Pb2-BSA. PMID: 15852867
    30. Data show that the binding constants of serum albumin and ZnPc(COOH)16 were 2.25-2.94 x 10(6) L x mol(-1). PMID: 17058928
    31. Data show that the binding power between BLFX and BSA is electrostatic effect. PMID: 17058955
    32. Data show that the combination reaction of AYR with BSA was a static quenching process. PMID: 17058958
    33. Data show that in long interaction period or at high concentration of SDS, SDS unfolded BSA by decreasing the alpha-helix structure and increasing the random coil. PMID: 17112025
    34. Data show that the binding constants (KA) between quercetin and BSA were 2.8 x 10(8) (26 degrees C) and 3.1 x 10(8) (36 degrees C), and the binding sites (n) were 1.7+/-0.02. PMID: 17112044
    35. Data show that the binding constant of this compound with bovine serum albumin (BSA) in aqueous solution was is Ka = 1.995 x 10(5) dm3 x mol(-1) and the binding site number is n = 1.12. PMID: 16201357
    36. results indicated that the binding reaction between BSA and purpure-18-imide was a single static quenching process. PMID: 16097695
    37. Data indicate that the hydrophobic force was the main binding force of TIF with bovine serum albumin in aqueous solution. PMID: 16329500
    38. Data show that the interaction of the umbelliferone-BSA was driven mainly by electrostatic force which was enhanced by Cu2+ and Zn2+. PMID: 16329506
    39. glycation and oxidation effects on the structure of serum albumin; the partial unfolding of the tertiary structure which accompanies the aggregation process is similar both in native and glycated BSA PMID: 20006741
    40. Structural analysis showed that lipids bind BSA via both hydrophilic and hydrophobic contacts. PMID: 19961210
    41. association constant and thermodynamic parameters and binding characterisitics for interaction of nigerloxin with bovine serum albumin. PMID: 15134145
    42. Temperature-dependent secondary structure and conformational changes to serum albumin occur twice, around 57 and 75 degrees C., and reveal that the alpha-helix and turn structures of serum albumin are cooperatively denatured by heating. PMID: 15350138
    43. Albumin up-regulates ligand-binding TGF-beta receptors on cultured proximal tubular cells. Albumin-induced activation of local Ang II production appears to be responsible for this effect. PMID: 15496155
    44. The results from the models show that there are at least two different binding sites located in the BSA protein with different water accessibility PMID: 16382334
    45. Human preadipocytes and freshly isolated adipocytes incubated with bovine serum albumin (BSA) in vitro secrete significantly higher amounts of cytokines IL-6, -8, and -10, and TNF-alpha compared with cells incubated without BSA. PMID: 16452161
    46. Serum albumin and serum retinol-binding protein(sRBP) are not components of bovine interphotoreceptor matrix(IPM). Serum albumin and sRBP can not participate in binding and transport of visual cycle retinoids in IPM of bovine retina. PMID: 17200663
    47. Bovine serum albumin is common allergen responsible for cow's milk allergy. Cross reactivity with serum albumins in meat/epithelial cells of other mammals results. PMID: 17680908
    48. BSA is able to form well-ordered beta-sheet rich aggregates which nevertheless do not possess the same structural rigidity as classical fibrils. PMID: 17689306
    49. interaction of bovine serum albumin with isoxazolcurcumin and diacetylcurcumin yielded binding constants, minor BSA conformation changes, and binding site PMID: 18037556
    50. The present study shows that GM1 has a strong effect on the conformation of BSA depending on the conformational states of the protein that would relate to a physiological function of GM1 such as acting as the receptor of proteins in the cell membrane. PMID: 18205315

    顯示更多

    收起更多

  • 亞細胞定位:
    Secreted.
  • 蛋白家族:
    ALB/AFP/VDB family
  • 組織特異性:
    Plasma.
  • 數據庫鏈接:


主站蜘蛛池模板: av无码一区二区二三区1区6区| 亚洲国产精品无码久久久久高潮 | 日本午夜免费福利视频| 在线观看免费视频污网站| 国产精品国产对白熟妇| 无码日韩做暖暖大全免费不卡| 欧美一区二区三区成人片在线| 色偷一区国产精品| 3d动漫精品啪啪一区二区中| 国产在线精品一品二区| 中文字幕精品久久久久人妻红杏1 久久久精品日本一区二区三区 | 大香伊蕉在人线国产网站首页 | 亚洲.日韩.欧美另类| 久久综合九色综合97欧美| 亚洲日韩va无码中文字幕| 国产成人亚洲精品另类动态 | 亚洲国产成人久久一区| 国产啪精品视频网站| 精品久久久久久无码中文字幕一区| 免费永久看黄神器无码软件| 色欲香天天综合网站| 国产精品亚韩精品无码a在线| 欧美成人一区二区三区 | 国产成人无码国产亚洲| 伊伊人成亚洲综合人网| 中文字幕一区二区三区乱码 | 欧美熟妇另类久久久久久多毛 | 国产精品久久777777| 国产aⅴ精品一区二区三区久久| 亚洲国产丝袜精品一区| 日本三级吃奶头添泬无码苍井空| 人妻无码中文字幕免费视频蜜桃| 国产美女被遭高潮免费网站| 特级做a爰片毛片免费看| 起碰免费公开97在线视频| 亚洲综合最新无码2020av| 国产亚洲精品欧洲在线观看| 成年性午夜免费视频网站| 欧洲美女黑人粗性暴交视频| 天天躁夜夜躁狠狠综合2020| 人妻无码人妻有码中文字幕|